Working Papers

Learning while Bargaining: Experimentation and Coasean Dynamics (new version in preparation) 

  • Best Graduate Paper Award at the Lisbon Meetings in Game Theory and Applications 2018
  • Finalist for the LAGV Prize at ASSET 2018

Abstract. I study a dynamic bilateral bargaining problem with incomplete information where better outside opportunities may arrive during negotiations. Gains from trade are uncertain. In a good-match market environment, outside opportunities are not available. In a bad-match market environment, superior outside opportunities stochastically arrive for either or both parties. The two parties begin their negotiations with the same belief about the type of market environment. As arrivals are public information, learning about the market environment is common. One party, the seller, makes price offers at every instant to the other party, the buyer. The seller has no commitment power and the buyer is privately informed about his own valuation. This gives rise to rich bargaining dynamics. In equilibrium, there is either an initial period with no trade or trade starts with a burst. Afterward, the seller screens out buyers one by one as uncertainty about the market environment unravels. Delay is always present, but it is inefficient only if valuations are interdependent. Whether prices increase or decrease over time depends on which party has a higher option value of learning. The seller exercises market power. In particular, when the seller can clear the market in finite time at a positive price, prices are higher than the competitive price. However, market power need not be at odds with efficiency. Applications include durable-good monopoly without commitment, wage bargaining in markets for skilled workers, and takeover negotiations.

Collective Search in Networks [SSRN(new version)

Abstract.  I study social learning in networks with information acquisition and choice. Rational agents act in sequence, observe the choices of their connections, and acquire information via sequential search. Complete learning occurs if search costs are not bounded away from zero, the network is sufficiently connected, and information paths are identifiable. If search costs are bounded away from zero, even a weaker notion of long-run learning fails, except in special networks. When agents observe random numbers of immediate predecessors, the rate of convergence, the probability of wrong herds, and long-run efficiency properties are the same as in the complete network. Network transparency has short-run implications for welfare and efficiency and the density of indirect connections affects convergence rates. Simply letting agents observe the shares of earlier choices reduces inefficiency and welfare losses.

Work in Progress

Dynamic Foundations for Empirical Static Games (with Lorenzo Magnolfi and Camilla Roncoroni)

Competitive Experimentation with Heterogeneous Learning Modes (with Francesco Paolo Conteduca)

Moral Hazard, Incentive Contracts, and the Structure of Managerial Markets (with Martin Peitz and Emanuele Tarantino)

Social Learning and the Value of Searching